S 18126 ([2-[4-(2,3-dihydrobenzo[1,4]dioxin-6-yl)piperazin-1-yl methyl]indan-2-yl]), a potent, selective and competitive antagonist at dopamine D4 receptors: an in vitro and in vivo comparison with L 745,870 (3-(4-[4-chlorophenyl]piperazin-1-yl)methyl-1H-pyrrolo[2, 3b]pyridine) and raclopride.

نویسندگان

  • M J Millan
  • A Newman-Tancredi
  • M Brocco
  • A Gobert
  • F Lejeune
  • V Audinot
  • J M Rivet
  • R Schreiber
  • A Dekeyne
  • M Spedding
  • J P Nicolas
  • J L Peglion
چکیده

The novel benzoindane S 18126 possessed > 100-fold higher affinity at cloned, human (h) D4 (Ki = 2.4 nM) vs. hD2 (738 nM), hD3 (2840 nM), hD1 (> 3000 nM) and hD5 (> 3000 nM) receptors and about 50 other sites, except sigma1 receptors (1.6 nM). L 745,870 similarly showed selectivity for hD4 (2.5 nM) vs. hD2 (905 nM) and hD3 (> 3000 nM) receptors. In contrast, raclopride displayed low affinity at hD4 (> 3000 nM) vs. hD2 (1.1 nM) and hD3 receptors (1.4 nM). Stimulation of [35S]-GTPgammaS binding at hD4 receptors by dopamine (DA) was blocked by S 18126 and L 745,870 with Kb values of 2.2 and 1.0 nM, respectively, whereas raclopride (> 1000 nM) was inactive. In contrast, raclopride inhibited stimulation of [35S]-GTPgammaS binding at hD2 sites by DA with a Kb of 1.4 nM, whereas S 18126 (> 1000 nM) and L 745,870 (> 1000 nM) were inactive. As concerns presynaptic dopaminergic receptors, raclopride (0.01-0.05 mg/kg s.c. ) markedly enhanced DA synthesis in mesocortical, mesolimbic and nigrostriatal dopaminergic pathways. In contrast, even high doses (2. 5-40.0 mg/kg s.c.) of S 18126 and L 745,870 were only weakly active. Similarly, raclopride (0.016 mg/kg i.v.) abolished inhibition of the firing rate of ventrotegmental dopaminergic neurons by apomorphine, whereas even high doses (0.5 mg/kg i.v.) of S 18126 and L 745,870 were only weakly active. As regards postsynaptic dopaminergic receptors, raclopride potently (0.01-0.3 mg/kg s.c.) reduced rotation elicited by quinpirole in rats with unilateral lesions of the substantia nigra, antagonized induction of hypothermia by PD 128, 907, blocked amphetamine-induced hyperlocomotion and was effective in six further models of potential antipsychotic activity. In contrast, S 18126 and L 745,870 were only weakly active in these models (5.0-> 40.0 mg/kg s.c.). In six models of extrapyramidal and motor symptoms, such as induction of catalepsy, raclopride was likewise potently active (0.01-2.0 mg/kg s.c.) whereas S 18126 and L 745,870 were only weakly active (10.0-80.0 mg/kg s.c.). In freely moving rats, raclopride (0.16 mg/kg s.c.) increased levels of DA by + 55% in dialysates of the frontal cortex. However, it also increased levels of DA in the accumbens and striatum by 70% and 75%, respectively. In contrast to raclopride, at a dose of 0.16 mg/kg s.c. , neither S 18126 nor L 745,870 modified frontal cortex levels of DA. However, at a high dose (40.0 mg/kg s.c.), S 18126 increased dialysate levels of DA (+ 85%) and noradrenaline (+ 100%), but not serotonin (+ 10%), in frontal cortex without affecting DA levels in accumbens (+ 10%) and striatum (+ 10%). In conclusion, S 18126 and L 745,870 behave as potent and selective antagonists of cloned, hD4 vs. other dopaminergic receptor types in vitro. However, their in vivo effects at high doses probably reflect residual antagonist actions at D2 (or D3) receptors. Selective blockade of D4 receptors was thus associated neither with a modification of dopaminergic transmission nor with antipsychotic (antiproductive) or extrapyramidal properties. The functional effects of selective D4 receptor blockade remain to be established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The combination of nicotine with the D2 antagonist raclopride or the weak D4 antagonist L-745,870 generates a clozapine-like facilitation of NMDA receptor-mediated neurotransmission in pyramidal cells of the rat medial prefrontal cortex.

Clozapine and other atypical, but not typical, antipsychotic drugs (APDs), facilitate both dopaminergic and N-methyl-D-aspartate (NMDA) receptor-mediated glutamatergic transmission in the medial prefrontal cortex (mPFC), which is thought to improve cognition. Switching schizophrenic patients from typical APDs to clozapine may reduce their cigarette smoking. Here, we tested whether nicotine, whi...

متن کامل

L-745,870, a subtype selective dopamine D4 receptor antagonist, does not exhibit a neuroleptic-like profile in rodent behavioral tests.

This study examined the high-affinity, selective dopamine D4 receptor antagonist, L-745,870 (3-([4-(4-chlorophenyl)piperazin-1-yl]methyl)-1H-pyrrolo[2, 3-b]pyridine) in rodent behavioral models used to predict antipsychotic potential and side-effect liabilities in humans. In contrast to the classical neuroleptic, haloperidol, and the atypical neuroleptic, clozapine, L-745,870 failed to antagoni...

متن کامل

Metabolism of A dopamine D(4)-selective antagonist in rat, monkey, and humans: formation of A novel mercapturic acid adduct.

3-([4-(4-Chlorophenyl)piperazin-1-yl]-methyl)-1H-pyrrolo-2, 3-beta-pyridine (L-745,870) is a dopamine D(4) selective antagonist that has been studied as a potential treatment for schizophrenia, with the expectation that it would not exhibit the extrapyramidal side effects often observed with the use of classical antipsychotic agents. The metabolism of L-745,870 in vivo was investigated in the r...

متن کامل

Biological profile of L-745,870, a selective antagonist with high affinity for the dopamine D4 receptor.

L-745,870,(3-([4-(4-chlorophenyl)piperazin-1-yl]methyl)-1H- pyrollo[2,3-b] pyridine, was identified as a selective dopamine D4 receptor antagonist with excellent oral bioavailability and brain penetration. L-745,870 displaced specific binding of 0.2 nM [3H] spiperone to cloned human dopamine D4 receptors with a binding affinity (Ki) of 0. 43 nM which was 5- and 20-fold higher than that of the s...

متن کامل

Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice.

Dopamine D(2)-like agonists induce penile erection (PE) and yawning in a variety of species, effects that have been suggested recently to be specifically mediated by the D(4) and D(3) receptors, respectively. The current studies were aimed at characterizing a series of D(2), D(3), and D(4) agonists with respect to their capacity to induce PE and yawning in the rat and the proerectile effects of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 287 1  شماره 

صفحات  -

تاریخ انتشار 1998